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Monolithic Capacitors as Transmission Lines

MARK INGALLS anp GORDON KENT, SENIOR MEMBER, 1EEE

Abstract —The results of network analyzer measurements of high-Q
multilayer (monolithic) chip capacitors show that the devices have the
characteristics of open-circuited transmission lines. Both standard sizes
(MIL-CDR-14 and MIL-CDR-12), ranging in capacitance values from 4.7
to 1000 pF, were tested on microstrip lines. A simple model of a periodi-
cally loaded line provides a dispersion relation that accounts for the
distribution of resonant frequericies. The orientation of the capacitor with
respect to the microstrip affects the occurrence and nature of resonances.
This phenomenon is shown to result from a distributed excitation source.
The unfolding of the capacitor to produce the periodic line is shown to
produce anomalies in the dissipation loss when skin depth and electrode
thickness are comparable.

I. INTRODUCTION

T LOW FREQUENCIES, the monolithic ceratnic

(porcelain) capacitor illustrated in Fig. 1 can be
adequately characterized as an ideal capacitor with a srall
series resistance and series inductance. The resistance,
attributable to the losses in the electrodes, is a function of
the skin effect; and it increases slowly with frequéncy. The
séries inductance accounts for the change in apparent
capacitance with frequency as the first self-resonance is
approached. Near and above this resonance, the simple
R-L-C series circuit fails to account for observed char-
acteristics.

An alternative to the R L-C model of the capacrtor isa
folded transmission line [1]. The process of folding is
equivalent to the periodic loading of a straight parallel-plate
line, as indicated in Fig. 2. Although the argument for this
model is compromised by the fact that the skin depth is
comparable to the electrode thickness over the frequency
range 0.5-2.0 GHz, the folded-line model proves success-
ful for the iriterpretation of a wide range of measurements.

In Section II of this paper, we present typical ‘observed
characteristics, selected from data on two styles of capaci-
tors, ranging in nominal value from 4.7 pF to 1000 pF.
Section III coitains an analysis of transmission models for
the capacitors. Comparisons of observed and “calculated
characteristics are presented in Section IV. Concludlng
remarks are presented in Section V.

II. EXPERIMENTAL OBSERVATIONS

Insertion loss, return loss, and polar plots have been
produced by the Hewlett Packard 8510 and Wiltron 5600
network analyzers. All devices tested were mounted on
50-2 microstrip transmission lines. Polar plots were made
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Monolithic capacitor mounted (a) with internal electrodes hori-
zontal, designated H, and (b) with internal electrodes vertical, desig-
nated V. Standard sizes are DL-11 (MIL-CDR-12), approxrmately 0.05
ih on a side, and DL-17 (MIL-CDR-14), approximately 0.11 in on a
side.

F1g 1.

of §,; with the capacitor short-circuited on the board.
Tests were made with capacitors mounted with the elec-
trodes parallel to the substrate, designated H, and normal
to the substrate, designated V. These mountings are il-
lustrated in Fig. 1.

The capacitors measured were randomly picked within a
tolerance category, and the samples varied in number from
two to six. Since the spread in those results was very small
only typical data are presented

All units show both scries and parallel resonances. The
series resonances are very broad and correspondingly dif-
ficult to measure [2]. Although the Q of the capacitor may
be high, the loaded Q that one obsérves is determined by
the external Q of the 50-Q system, and this is normally
very low. The definition of series resonance as that
frequency at which the capacitor reactance is Zero also fails
to give precise results. The phase measurement is sensitive
to the location of the reference plane and reactances
associated with the coupling from the line to the capacitor.
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Fig. 2. Cross section of a model capacitor showing (below) the equiv-
alent circuit of one period.
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Fig. 3. Sample of graphical data, produced by the HP-8510 network
analyzer, that shows typical series and parallel resonance effects. The
frequency range is 0.045-2.000 GHz.

The parallel resonances are relatively sharp, and they can
be defined and measured as the frequencies of maximum
energy absorption. This definition makes the measurement
insensitive to fixture mismatch errors.

Fig. 3 illustrates the evidence of series and parallel
resonances for a capacitor mounted on a short circuited
microstrip line. An error of one or two degrees in de-
termining the phase of S;; near 180° corresponds to a
substantial error in the series resonant frequency; it also
corresponds to a length on the microstrip that may be of
the order of the capacitor’s dimensions. The parallel reso-
nance is unambiguously shown by the sharp minimum of
10g Sy

Fig. 4 shows the sequence of parallel resonances ob-
~served for five DL-17 capacitors. Similar results were
found for all sizes and capacitor values. Resonances may
occur at frequencies above those shown, but increasing
losses tend to obscure the resonance effects. The frequency
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Insertion loss plots for five DL-17 capacitors.
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Fig. 5. The effects of asymmetric mounting on observed resonances.
‘(a) H-mounting centered, (b) H-mounting off center, (c) V-mounting
off center, and (d) V-mounting centered. The sweep range is 0.05-3.00
GHz.
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Fig. 6 Typical frequency depeﬁdence of dissipation loss. Superposed on the curves plotted from data are envelopes (dashed
curves) derived from a uniform line model with losses determined by skin effect

separation of resonances tends to decrease as the frequency
increases.

As reported elsewhere [3], the odd-numbered parallel
resonances found with the H-mounting are not generally
observed with the V-mounting. Phase information, such as
that shown in Fig. 3, indicates that the suppressed parallel
resonances of the H-mounting become the series rteso-
nances of the V-mounting. Complete suppression, how-
ever, depends on the location of the capacitor with respect
to the center of the microstrip.

Fig. 5 shows the return loss in dB versus frequency of a
capacitor (100 pF) mounted on a 25-mil microstrip
terminated in a short circuit. For the data of Fig. 5(a), the
capacitor is centered in the H-mounting. At the first two
parallel resonances, the return loss exceeds 10 dB. No
significant change in resonant frequency or return loss
occurs when the H-mounting is off center, as shown in Fig.
5(b). The data for the centered V-mounting, Fig. 5(d),
show full suppression of the first resonance and a signifi-
cant reduction of the return loss at the second. When the
V-mounting is off center, Fig. 5(c), the first resonance is
again evident. Although the effect is very small, this inter-
pretation is justified by the polar plots.

The dissipation loss of a typical unit in the H-mounting
is shown in Fig. 6. In the calculations for the figure, the
fixture was represented by an equivalent series resistance.
The broad minima and sharp maxima show the contrast in
definition of the series and parallel resonances. Also a
typical feature, the maxima and minima do not lie on
smooth envelope curves. To emphasize this characteristic,
the envelopes for a uniform open-circuited transmission
line with losses determined by skin effect are shown as
dashed curves.

The sequence of alternate series and parallel resonances
indicates that a transmission line model of the capacitor is
more useful than a lumped-element ladder network [4] in
which the number of sections would vary from one unit to
another. In view of the structure of a capacitor, the folded
line or the equivalent periodically loaded line seems most
appropriate.

III. ANALYSIS OF THE PERIODICALLY LOADED LINE
A. Two-Parameter Representation of the Lossless Line

One can argue the plausibility of representing the fold in
the line by a series inductive reactance and a shunt capaci-
tive susceptance. If the element values are independent of
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frequency, both reactance and susceptance are strictly
proportional to frequency. Thus, the element values are the
two parameters to be determined either by calculation or
from experimental data. An alternate representation of the
fold is a short uniform transmission line of characteristic
impedance different from that of the straight, unfolded
portion of the line. In this case, the frequency dependence
of the reactance and susceptance is sinusoidal, and the two
parameters are length and characteristic impedance. At
low frequencies, the two representations are equivalent.
The limitations of both approaches provide no compelling
argument for choosing. one above the other, but some
analytic simplicity is achieved by using transmission line
calculations for both the fold and the nonfolded parts.

For a half-length of fold for which ¢, = (w/; /v,), the
reactance and susceptance [5] of Fig. 2 are

X=1(Z,/7)sin¢,cos ¢,
B= (U/Zo)tan¢1

(1)
(2)
where

n= (ZO/Zl) (3)
Zy= (Ho/‘)l/z(t/w)- 4)

The elements of the impedance matrix for the period are
found to be

sin ¢, cos ¢,
n
COS Py — Ntan ¢, sing,
2mtan, cos ¢y + (1— 1> tane, ) sin g,
B —JZ,
2qtang, cos ¢, + (1— n? tan’ ¢, ) sin gy,

Z=JjZ,

(5)

(6)

Z21

where ¢, = (wl/v,,). These impedances are related to the
phase shift per period [6], ¥, by

1+n2

cos Y =(Z,,/Z,) = cos2¢, cos ¢y — sin2¢, sin ¢,

(7)
and the characteristic impedance of the loaded line, Z, 1s
Z,= jZysiny. (8)

When the capacitor is driven at one end of the folded
line and the other end is open or shorted, the driving point
impedances are, respectively,

Z, . =— jZ cot Ny
Z,= jZ tan NY

(9)
(10)
where N is the number of periods.

The parameters n and [, for the fold can be related to

the dc capacitance C; and inductance L, by taking limit-
ing values of (9) and (10) and using (7) and (8). The result

18 (11)
(12)

lo+20l = (ZoUph/N)Co
lo+(2/n)l = (v, /NZy) L.
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At least in principle, n and /; can be obtained from
measurements of C; and L. The practical problem is that
one must disect the capacitor to provide the short for the
measurement of L.

The limiting values of (11) and (12) are preserved in the
approximation of (7),

cosy =cos¢ —(1/1—1n)¢;sing (13)

where ¢ = ¢, +2n¢,. The coefficient of cos¢ is accurate
to the order ¢4, and the coefficient of sin¢ is accurate to
order ¢3. The quantity 2n¢, can be calculated from (11).
To the same order of approximation, the characteristic
impedance is

Z.=Z,[1-(1~7")¢}][siny/sing].  (14)
Clearly, (13) and (14) are good approximations at the
lower frequencies and for capacitors with a relatively small
value of (I, —[,). Moreover, the cutoff frequency that is
characteristic of periodically loaded lines is embedded in
13).

B. The Effects of Capacitor Excitation

The periodic line of the capacitor in the H-mounting is
driven at one end, and the other end is open; but in the
V-mounting, the line is excited over some portion of its
interior, and both ends are open. The fields underneath the
microstrip are exposed to the edges of the capacitor elec-
trodes through the window formed by the microstrip gap.
Although the electric fields that terminate on the electrode
edges induce charges, the principal excitation is the current
induced by the transverse magnetic field.

To examine the effects of this distributed source, we
assume the capacitor to be a uniform line characterized by
L, the inductance per meter, and C, the capacitance per
meter. With the induced current represented by J,(z)
A/m, the equations for the line voltage and current are

dl/dz + joCV = Jy(z) (15)
dV/dz + joLI=0. (16)

The line extends from z=0 to z=a. To solve the line
equations, we put

V(z) =) v,cosk,z
I(z)=Yi,sink,z (18)
Jo(2) = Ljncosk,z (19)

where k,= (nw/a), n=0,1,---. The relations of the
Fourier coefficients v, and i, to j,, obtained from (15) and
(16), are

(vn/jn,) = ]wL/(kz - kz)’
(in/si) = b/ (ke = K2).
The driving current at the stripline gap is

I,= /(; Jo(2) dz = aj,.

" From these results, the stored energy in the capacitor
can be calculated in terms of the coefficients ( j,), and an

(17)

k?=wLC (20)

(21)

(22)
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input impedance can be calculated from the definition

Zo= JAo(Wy = W) /115 (23)
The result is
Z[1 1 = 1 1
Zon=—j—|—+= 2L A4; +—— || (24
Tk 4,21 "\k+k, k—kn”( )
where 43 = | j, /jol*.

Equation (24) has all the poles (parallel resonances) of
the impedance of the open line when driven at one end, as
one can see from the series representation

— Z(1, & (1 1

— =—j =+ — ).
Joocotia="J7 Kik o k—k,
(25)

k n=1
In both cases, there is a zero (series resonance) between
adjacent poles. The residues at the poles in (25) are all
equal; as a result, zeros are always exactly midway be-
tween poles. The residues in (24) depend on the current
distribution J,(z), and their values affect the locations of
the interspersed zeros.

When the distribution of induced current is symmetric
about z=(a/2), j,=0=A42 for odd values of n. Thus,
all odd ordered poles are removed, and the zeros coalesce
so that there is but one zero between adjacent poles. The
new zeros are close to the poles that have been removed,
but they will not coincide exactly unless 4%, =4. This is
the case when the induced current is an impulse function
at the center. Then, (24) has the form of (25) with k,
redefined.

C. The Effects of Skin Depth on Losses

When electrode thickness is comparable to the skin
depth, the fields in two adjacent regions of overlapping
electrodes are not shielded from each other. The resulting
coupling between transmission line periods introduces
complications not contained in our proposed simple model.
In particular, the losses in the electrodes will depend on
the current distribution along the folded line and in the
interior of each electrode. When the line is unfolded, these
losses must be assigned to each period in a way that takes
account of the unfolding process and the original current
distribution. It is not correct simply to assign a constant
resistance per meter for all sections of the developed line.

The dependence of losses on current distribution can be
demonstrated with the simple capacitor illustrated in Fig.
7(a). The unfolding shown in Fig. 7(b) maintains the
lengths of surfaces carrying oppositely directed currents.
The essential feature is the splitting of the internal elec-
trode to produce the two thin sections, B and C, of the
developed line. In order to simplify the calculations, we
assume (i) that the lengths of A and D are very small
compared to the total length of B and C, and (ii) that most
loss occurs in B and C.

For the current density in the z direction at a point in
the cross section of the internal electrode, we write

J(x,z)=J(2)e ¥+ J,(z)et >

(26)
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Tllustration of (a) the cross section of a simple capacitor and
(b) 1ts development into a parallel-plate transmission line.
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Fig. 7.

where T'=(1+ j)/8 and § is the skin depth. After unfold-
ing the line, the current in section B is

I(—z)=wfdJ(x,z)dx (27)
0
and in section C, it is
I(z)=wf0 J(x,z)dx. (28)
—d

The coefficients J;(z) and J,(z) are related to the even
and odd parts of I(z) by the equation

J - Ievn(z) Iodd(z)
L2 2w | sinhTd = coshT'd —1

where the subscript 2 applies to the lower sign.
The power dissipated in the center electrode is

p=2" ; ff (30)

where p = the resistivity of the electrode. The part of the
integrand that is odd with respect-to x is also odd with
respect to z. After the x integration, the integrand is even
with respect to z, and the remaining terms can be in-
tegrated over the full developed length (— a, @) to obtain

pP= RO2 / (31)

where R,=p(2a/dw) is the dc resistance of sections C
and B and

(29)

x,z)J*(x,z) dxdz

2allon? + D2l oaal?) dz

(d/8)(sinh2d /8 +sin2d /8)

D2
en 2Jsinh T'd|? (32)
(d/8)(sinh2d /8 —sin2d /8)
DI = i
odd 2|cosh T'd — 12 (33)

In the limit as & — 0 both coefficients approach (d /), but
in the low-frequency limit D2 —1 while D2, — 4/3. For
a dc current, P = R,I;.
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Fig 8. Envelopes of maxima and minima of the dissipation loss at

resonances of the capacitor of Fig. 7.

For an open circuit at z =g and a current
I = I,(sin ka cos kz — cos ka sin kz) (34)

the normalized dissipation is

2P Ry , ., sin2ka
p=;;2~z—:=z{Devnsm ka(1+ Sk )
5 ) sin2ka
+ D2 cos ka(l— T )} (35)
At a resonance, 2ka =n(w/2); n=1,2,---. Series reso-

nances occur when n is odd, and the even values corre-
spond to parallel resonances. The normalized dissipation
at a particular value of n is designated as p,. The input
impedance at resonance is .

Zn = Zc(l/pn)('l)"‘
The corresponding dissipation loss is then
L, =10log(1+ Z,/Z,). (37)

Equation (37) is used to calculate the envelopes, shown
in Fig. 8, of maxima and minima of the dissipation loss.
The calculations are for (Z,/Z,) = 0.160 and a first series
resonance of 1 GHz, corresponding to a capacity of ap-
proximately 30 pF. The values of the ratio of (d/8) at 1
GHz have been chosen to demonstrate its effect on the
relative amplitudes of the dissipation losses at parallel
resonances with n /2 odd and »n /2 even. In both cases, the
envelopes cross each other. The upper two solid curves
cross at some frequency less than 2 GHz, but the upper
dashed curves cross at a frequency much above 20 GHz.
The value of (0.534) for (d/8) at 1 GHz is the more
realistic estimate for a capacitor.

(36)

IV. COMPARISON OF DATA WITH THEORY

The test of (7) or (9) is whether or not the measured
resonant frequencies can be calculated by putting ¢ =
(n/N)m, n=1,2,---, N, given appropriate values for 7
and /;. Although these parameter values could be calcu-
lated by a numerical analysis of the field problem, the
validity of the results would be compromised by unknown
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faults in capacitor fabrication. Since other schemes for
determining 1 and /; suffer from similar limitations, the
best one can expect is qualitative correspondence between
data and model.

One option is to choose 7 and /; so that (7), regarded as
a two-parameter function, is an optimum fit to the data.
The resulting parameter values, however, may have no
transparent relationship to capacitor construction, and the
quality of the fit may have no relevance to the validity of
the equation. Some other two-parameter function might fit
as well or better.

A second approach, which has the merits of relying on
experiments independent of the frequency data, is the
determination of n and /; from the measurement of C,
and L,, using (11) and (12). Weighing against the proce-
dure is the need to disect the capacitor to measure L, and
to determine whether the value of C, indicates fringing
capacitance or a structural fault. In the cases where the
surgery has been performed, a very small fringing capaci-
tance has been found. The inductance, which could not be
measured with adequate precision, was found to be less
than pol,(Nt/w).

What appears to be the best option is to require that (7)
vyield the correct cutoff frequency, a quantity which may be
measurable, and to drop the fringing capacitance. If we
approximate the cutoff frequency by

fco = Uph/2]2

a relationship between 7 and /, is established.
As both parameters go to zero, thus eliminating the
capacitive susceptance,

w(l/nl,) = [L+cosw(ly/1,)] sinm(ly/1,). (39)
In this limit, both (7) and (13) take the form

COs Y = cos ’”(lof/lzfco) - Bﬂ(lof/lzfco) Sin'”(lof/lzfco)
(40)

(38)

where B =[1+cosa(l,/1,))/[7({y/1,)sinn(ly/1,)].

The solid curve in Fig. 9 is a plot of (f/f,,) versus
(¢ /7) calculated from (40) with (/,/I,)=(1/2). This
value of (/,/1,) applies to many of the capacitors tested,
and the change in the curve for other values of (/,/1,) is
small, occurring mostly near ¢ = 7. The data points are
parallel resonances, assumed to occur at ¢ =m(n/N).
Evidently, qualitative agreement is good. The principal
discrepancy appears to be the simplistic assumption of the
cutoff frequency as given by (38). The data suggest that it
should be higher. Moreover, (38) is equivalent to the
assumption that L= p,l,(Nt/w), an estimate that is
high.

The suppression of odd ordered H-mounting resonances
when the capacitor is in the V-mounting is qualitatively
predicted by the uniform line model driven by a distrib-
uted source. The analysis of the model leads to the conjec-
ture born out in Fig. 5(c) that full suppression of the odd
ordered resonances may fail if the V-mounting is off
center. The polar plot of the S;; of Fig. 5(c) (not included
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here) shows two series resonances just above and below the
weak parallel resonance. These data are consistent with the
contention, based on the model, that two adjacent zeros
coalesce as the residue at the pole approaches zero.

The simple model of Fig. 8 fails to account for the
quasi-periodic characteristic of the dissipation loss at reso-
nance, as shown in Fig. 6, but it shows that oscillations of
the minima and maxima are a consequence of the folds in

the line and the fact that electrode thickness and skin |

depth are of the same order of magnitude.

V. CONCLUDING REMARKS

The evidence that monolithic capacitors have the char-
acteristics of folded transmission lines can be summarized
as follows:

(i) Resonances occur in a sequence with diminishing
frequency differences that indicate the existence of
a cutoff frequency.

(i) The dispersion equation of a simplified, periodi-
cally loaded line corresponds at least qualitatively
to the observed resonances.

The suppression or occurrences of resonances as they
depend on the capacitor orientation is qualitatively ex-
plained in terms of a uniform line with a distributed
source.

A simple model of a folded line shows that successive
maxima (and minima) of dissipation loss do not fall on
smooth envelope curves. This quasi-periodicity is affected
by skin depth relative to electrode thickness. Better corre-
spondence to observed dissipation loss might be improved
with a more sophisticated model.
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