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Monolithic Capacitors as Transmission Lines

MARK INGALLS AND GORDON KENT, SENIOR MEMBER, IEEE

Abstract –The results of network analyzer measurements of high-Q

multilayer (monolithic) chip capacitors show that the devices have the

characteristics of open-circuited transmission liues. Both standard sizes

(MIL-CDR-14 and MIL-CDR-12), ranging in capacitance values from 4.7

to 1000 pF, were tested on microstrip lines. A simple model of a periodi-

cally loaded line provides a dispersion relation that accounts for the

distribution of resonant frequencies. The orientation of the capacitor with

respect to the microstrip affects the occurrence and nature of resonances.

This phenomenon is shown to result from a dktributed excitation source.

The unfolding of the capacitor to produce the periodic line is shdwn to

produce anomalies in the dissipation loss when skin depth and electrode

thickuess are comparable.

I. INTRODUCTION

A T LOW FREQUENCIES, the monolithic ceratic

(porcelain) capacitor illustrated in Fig. 1 can be

adequately characterized as an ideal capacitor with a small

series resistance and series inductance. The resistance,

attributable to the losses in the electrodes, is a function of

the skin effect, and it increases slowly with frequency. The

series inductance accounts for the change in apparent

capacitance with frequency as the first self-resonance is

approached. Near and above this resonance, the simple

R-L-C series circuit fails to account for observed char-

acteristics.

An alternative to the R-L-C model of the capacitor is a

folded transmission line [1]. The process of folding is

equivalent to the periodic loading of a straight parallel-plate

line, as indicated in Fig. 2. Although the argument for this

model is compromised by the fact that the skin depth is

comparable to the electrode thickness over the frequency

range 0.5 –2.0 GHz, the folded-line model proves success-
ful for the interpretation of a wide range of measurements.

In Section 11 of this paper, we present typical observed

characteristics, selected from data on two styles of capaci-

tors, ranging in nominal value from 4.7 pF to 1000 pF.

Section 111 contains an imalysis of transmission models for

the capacitors. Comparisons of observed and calculated

characteristics are presented in Section IV. Concluding

remarks are presented in Section V.

II. EXPERIMENTAL OBSERVATIONS

Insertion loss, return loss, and polar plots have been

produced by the Hewlett Packard 8510 and Wiltron 5600

network analyzers. All devices tested were mounted on

50-fJ microstrip transmission lines. Polar plots were made
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Fig. 1. Monolithic caDacitor mounted (a) with internal electrodes hon-.
zontal, designated H, and (b) with in~ernal electrodes vertical, desig-

nated V. Standard sizes are DL-11, (MIL-CDR-12), approximately 0.05
in on a side, and DL-17 (MIL-CDR-14), approximately 0.11 in on a
side.

of Sll with the capacitor short-circuited On the board.

Tests were made with capacitors mounted with the elec-

trodes parallel to the substrate, designated H, and normal

to the substrate, designated V. These mountings are il-

lustrated in Fig. 1.

The capacitors measured were randomly picked within a

tolerance category, and the samples varied in number from

two to six. Since the spread in those results was very small,

only typical data are presented.
All units show both series and parallel resonances. The

series resonances are very broad and correspondingly dif-

ficult to measure [2]. Although the Q of the capacitor may

be high, the loaded Q that one observes is determined by

the external Q of the 50-L? system, and this is normally

very low. The definition of series resonance as that

frequency at which the capacitor reactance is zero also fails

to give precise results. The phase measurement is sensitive

to the location of the reference plane and reactance

associated with the coupling from the line to the capacitor.
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Fig. 2, Cross section of a model capacitor showing (below) the equiv-

alent circuit of one period.
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Fig. 3. Sample of graphical data, produced by the HP-851O network
analyzer, that shows typical series and parallel resonance effects. The

frequency range is 0.045-2.000 GHz.

The parallel resonances are relatively sharp, and they can

be defined and measured as the frequencies ?f maximum

energy absorption. This definition makes the measurement

insensitive to fixture mismatch errors.

Fig. 3 illustrates the evidence of series and parallel

resonances for a capacitor mounted on a short circuited

microstrip line. An error of one or two degrees in de-

termining the phase of Sll near 180° ~orresponds to a

substantial error in the series resonant frequency; it alSO

corresponds to a length on the microstrip that may be of

the order of the capacitm’s dimensions. The parallel reso-

nance is unambiguously shown by the sharp minimum of
log Islll.

Fig. 4 shows the sequence of parallel resonances ob-

served for five DL-17 capacitors. Similar results were

found for all sizes and capacitor values. Resonances may

occur at frequencies above those shown, but increasing

losses tend to obscure the resonance effects. The frequency
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Fig. 4. InsertIon loss plots for five DL-17 capacitors.
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Fig. 5. The effects of asymmetric mounting on observed resonances.

~(a) H-mounting centered, (b) H-mounting off center, (c) V-mounting

off center, and (d) V-mounting centered. The sweep range is 0.05–3.00

GHz.
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Fig. 6 Typical frequency dependence of dissipation loss. Superposed on the curves plotted from data are envelopes (dashed
curves) derived from a uniform line model with losses determined by skin effect

separation of resonances tends to decrease as the frequency

increases.

As reported elsewhere [3], the odd-numbered parallel

resonances found with the H-mounting are not generally

observed with the V-mounting. Phase information, such as

that shown in Fig. 3, indicates that the suppressed parallel

resonances of the H-mounting become the series reso-

nances of the V-mounting. Complete suppression, how-

ever, depends on the location of the capacitor with respect

to the center of the microstrip.

Fig. 5 shows the return loss in dB versus frequency of a
capacitor (100 pF) mounted on a 25-roil microstrip

terminated in a short circuit. For the data of Fig. 5(a), the

capacitor is centered in the H-mounting. At the first two

parallel resonances, the return loss exceeds 10 dB. No

significant change in resonant frequency or return loss

occurs when the H-mounting is off center, as shown in Fig.

5(b). The data for the centered V-mounting, Fig. 5(d),

show full suppression of the first resonance and a signifi-

cant reduction of the return loss at the second. When the

V-mounting is off center, Fig. 5(c), the first resonance is

again evident. Although the effect is very small, this inter-
pretation is justified by the polar plots.

The dissipation loss of a typical unit in the H-mounting

is shown in Fig. 6. In the calculations for the figure, the

fixture was represented by an equivalent series resistance.

The broad minima and sharp maxima show the contrast in

definition of the series and parallel resonances. Also a

typical feature, the maxima and minima do not lie on

smooth envelope curves. To emphasize this characteristic,

the envelopes for a uniform open-circuited transmission

line with losses determined by skin effect are shown as

dashed curves.

The sequence of alternate series and parallel resonances
indicates that a transmission line model of the capacitor is

more useful than a lumped-element ladder network [4] in

which the number of sections would vary from one unit to

another. In view of the structure of a capacitor, the folded

line or the equivalent periodically loaded line seems most

appropriate.

III. ANALYSIS OF THE PERIODICALLY LOADED LINE

A. Two-Parameter Representation of the Lossless Line

One can argue the plausibility of representing the fold in

the line by a series inductive reactance and a shunt capaci-

tive susceptance. If the element values are independent of
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frequency, both reactance and susceptance are strictly

proportional to frequency. Thus, the element values are the

two parameters to be determined either by calculation or

from experimental data. An alternate representation of the

fold is a short uniform transmission line of characteristic

impedance different from that of the straight, unfolded

portion of the line. In this case, the frequency dependence

of the reactance and susceptance is sinusoidal, and the two

parameters are length and characteristic impedance. At

low frequencies, the two representations are equivalent.

The limitations of both approaches provide no compelling

argument for choosing one above the other, but some

analytic simplicity is achieved by using transmission line

calculations for both the fold and the nonfolded parts.

For a half-length of fold for which @l= ( till /uP~), the

~eactance and susceptance [5] of Fig. 2 are

X= (ZO/q)sin@lcos@l (1)

B=(q/zo)tan@l (2)

where

T = (20/21) (3)

20= (po/+’2(t/w). (4)

The elements of the impedance matrix for the period are

found to be

[

sin$l cos *I
Zll = jzo

~

cos+o – qtan$l sin+. ‘
—

2qtan@lcos@o + (1 – 712tan2~l) sin+. 1(5)

221 =
– jZo

2qtan@lcos@o + (1– q2 tan2~l) sin$o
(6)

where @o= (do /UP~ ). These impedances are related to the

phase shift per periQd [6], ~, by

l+q*
Cos + = (ZJZ21) = COS2+1COS4+)– —

2’q
sin 241 sin +0

(7)

and the characteristic impedance of the loaded line, Z,, is

ZC = jZ21 sin $. (8)

When the capacitor is driven at one end of the folded

line and the other end is open or shorted, the driving point

impedances are, respectively,

Zoc = – jzccot N+ (9)

Z,C = jZC tan N$ (lo)

where N is the number of periods.

The parameters q and 11 for the fold can be related to

the dc capacitance Co and inductance LO by taking limit-

ing values of (9) and (10) and using (7) and (8). The result

is

10+ 2qll = (ZoUP~\N)Co (11)

10+ (2/q)ll = (UP~/NZo)Lo. (12)

967

At least in principle, q and 11 can be obtained from

measurements of Co and Lo. The practical problem is that

one must disect the capacitor to provide the short for the

measurement of LO.

The limiting values of (11) and (12) are preserved in the

approximation of (7),

cos~=cos@ –(l/q–q)@l sin@ (13)

where @= @o+ 2rp#q. The coefficient of cos + is accurate

to the order +;, and the coefficient of sin $ is accurate to

order +:. The quantity 2q@l can be calculated from (11).

To the same order of approximation, the characteristic

impedance is

ZC=Zo[l –(1–q2)@~] [sin~/sin@]. (14)

Clearly, (13) and (14) are good approximations at the

lower frequencies and for capacitors with a relatively small

value of (12 – 10). Moreover, the cutoff frequency that is

characteristic of periodically loaded lines is embedded in

(13).

B. The Effects of Capacitor Excitation

The periodic line of the capacitor in the H-mounting is

driven at one end, and the other end is open; but in the

V-mounting, the line is excited over some portion of its

interior, and both ends are open. The fields underneath the

microstrip are exposed to the edges of the capacitor elec-

trodes through the window formed by the microstrip gap.

Although the electric fields that terminate on the electrode

edges induce charges, the principal excitation is the current

induced by the transverse magnetic field.

To examine the effects of this distributed source, we

assume the capacitor to be a uniform line characterized by

L, the inductance per meter, and C, the capacitance per

meter. With the induced current represented by Jo(z)

A/m, the equations for the line voltage and current are

dI/dz + jKV= JO(z) (15)

dV/dz + juLI = O. (16)

The line extends from z = O to z = a. To solve the line

equations, we put

v(z) = ~uncosknz (17)

l(z) =~i. sink.z (18)

.lO(z) = ~j.cosk.z (19)

where k. = (n v/a), n = 0,1, c0.. The relations of the

Fourier coefficients u. and i. to j., obtained from (15) and

(16), are

(oH/j,,) = j~L/(k~ - k2), k2 = ti2LC (20)

(in/jm) =kn/(k~-k2). (21)

The driving current at the stripline gap is

J
l.= “Jo(z) dz=ajo. (22)

o

From these results, the stored energy in the capacitor
can be calculated in terms of the coefficients ( i.). and an
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input impedance can be calculated from the definition

Z,m = j4a(W~ – W~)/lO1~. (23)

The result is

where A; = [jfl/jO[2.

Equation (24) has all the poles (parallel resonances) of

the impedance of the open line when driven at one end, as

one can see from the series representation

(25)

In both cases, there is a zero (series resonance) between

adj scent poles. The residues at the poles in (25) are all

equal; as a result, zeros are always exactly midway be-

tween poles. The residues in (24) depend on the current

distribution JO(Z), and their values affect the locations of

the interspersed zeros.

When the distribution of induced current is symmetric

about z = (a/2), j. = O = A: for odd values of n. Thus,

all odd ordered poles are removed, and the zeros coalesce

so that there is but one zero between adjacent poles. The

new zeros are close to the poles that have been removed,

but they will not coincide exactly unless A;. =4. This is

the case when the induced current is an impulse function

at the center. Then, (24) has the form of (25) with k.

redefined.

C. The Effects of Skin Depth on Losses

When electrode thickness is comparable to the skin

depth, the fields in two adjacent regions of overlapping

electrodes are not shielded from each other. The resulting

coupling between transmission line periods introduces

complications not contained in our proposed simple model.

In particular, the losses in the electrodes will depend on

the current distribution along the folded line and in the

interior of each electrode. When the line is unfolded, these

losses must be assigned to each period in a way that takes

account of the unfolding process and the original current

distribution. It is not correct simply to assign a constant

resistance per meter for all sections of the developed line.

The dependence of losses on current distribution can be

demonstrated with the simple capacitor illustrated in Fig.

7(a). The unfolding shown in Fig. 7(b) maintains the

lengths of surfaces carrying oppositely directed currents.

The essential feature is the splitting of the internal elec-

trode to produce the two thin sections, B and C, of the

developed line. In order to simplify the calculations, we

assume (i) that the lengths of A and D are very small

compared to the total length of B and C, and (ii) that most

loss occurs in B and C.

For the current density in the z direction at a point in

the cross section of the internal electrode, we write

J(x, z)=.ll(z)e-rx +.lz(z)e+rx (26)

(a)

(b)

Fig, 7

x.o–

Z,o
I

I

Z=()

Illustration of (a) the cross section of a simple capacitor and

(b) Its development into a parallel-plate transmission hne.

where r = (1+ j)\~ and d is the skin depth. After unfold-

ing the line, the current in section B is

l(–z)=wJdJ(x, z)dx (27)
o

and in section C, it is

I(z) =Wf” J(x, z)dx. (28)
–d

The coefficients .lI(z) and J2(z) are related to the even

and odd parts of 1(z) by the equation

[

r I,vn(z) 10~~(Z)

J1,2 = — —
2 w sinh 17d * cosh I’d – 1 1 (29)

where the subscript 2 applies to the lower sign.

The power dissipated in the center electrode is

~=$f/:j(X,z)J*(X, z)dXdz (30)

where p = the resistivity of the electrode. The part of the

integrand that is odd with respect to x is also odd with

respect to z. After the x integration, the integrand is even

with respect to z, and the remaining terms can be in-

tegrated over the full developed length (– a, a) to obtain

P = RO& j: (D&lI_l~ + Dj~,&a12) dz (31)
u

where R o = p (2 a /dw ) is the dc resistance of sections C

and B and

D2 = (d/8) (sinh2d/8 +sin2d/8)
evn

2 Isinh 17d12
(32)

(d/8 )(sinh2d/8 -sin2d/i3)
D&=

‘[coshrd – 112 “
(33)

In the limit as 8 ~ O both coefficients approach (d/8), but

in the low-frequency limit D& ~ 1 while D~~~ ~ 4/3. For

a dc current, P = RoI~.
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Fig 8. Envelopes of maxima and minima of the dissipation loss at

resonances of the capacitor of Fig. 7.

For an open circuit at z = a and a current

I = 10(sin ka cos kz – cos ka sin kz ) (34)

the normalized dissipation is

‘=%{”’nsin’k”(’+%)p=I:ZC

‘D’ddcos’ka(+%‘3’)
At a resonance, 2ka = n(r/2); n =1,2, . . . . Series reso-

nances occur when n is odd, and the even values corre-

spond to parallel resonances. The normalized dissipation

at a particular value of n is designated as p.. The input

impedance at resonance is \

Zn = zc(l/’pn)(-l)”. (36)

The corresponding dissipation loss is then

L,i, =lolog(l + zn/zo). (37)

Equation (37) is used to calculate the envelopes, shown

in Fig. 8, of maxima and minima of the dissipation loss.

The calculations are for (ZC/ZO) = 0.160 and a first series

resonance of 1 GHz, corresponding to a capacity of ap-

proximately 30 pF, The values of the ratio of (d/ii) at 1

GHz have been chosen to demonstrate its effect on the

relative amplitudes of the dissipation losses at parallel

resonances with n/2 odd and n/2 even. In both cases, the

envelopes cross each other. The upper two solid curves

cross at some frequency less than 2 GHz, but the upper

dashed curves cross at a frequency much above 20 GHz.

The value of (0.534) for (d/i3) at 1 GHz is the more

realistic estimate for a capacitor.

faults in capacitor fabrication. Since other schemes for

determining q and 11 suffer from similar limitations, the

best one can expect is qualitative correspondence between

data and model.

One option is to choose q and 11 so that (7), regarded as

a two-parameter function, is an optimum fit to the data.

The resulting parameter values, however, may have no

transparent relationship to capacitor construction, and the

quality of the fit may have no relevance to the validity of

the equation. Some other two-parameter function might fit

as well or better.

A second approach, which has the merits of relying on

experiments independent of the frequency data, is the

determination of q and /l from the measurement of CO

and LO, using (11) and (12). Weighing against the proce-

dure is the need to disect the capacitor to measure LO and

to determine whether the value of CO ifidicates fringing

capacitance or a structural fault. In the cases where the

surgery has been performed, a very small fringing capaci-

tance has been found. The inductance, which could not be

measured with adequate precision, was found to be less

than p012(Nt/w),

What appears to be the best option is to require that (7)

yield the correct cutoff frequency, a quantity which maybe

measurable, and to drop the fringing capacitance. If we

approximate the cutoff frequency by

a relationship between q and lz is established.

As both parameters go to zero, thus eliminating the

capacitive susceptance,

~(11/q12) + [l+costi(lo/12) ]/sin~(lo/z2). (39)

In this limit, both (7) and (13) take the form

cos $ = cos w(lof/12 fCO)– Br(lof/12 fCO)sin n(10f/12 fCO)

(40)

where B = [1+ cos ~(lo/12)]/[n(lo /12) sinm(lo/12)].

The solid curve in Fig. 9 is a plot of ( f/fco) versus

(+/n) calculated from (40) with (1./12) = (1/2). This
value of (10/12) applies to many of the capacitors tested,

and the change in the curve for other values of (/./12) is

small, occurring mostly near ~ = n. The data points are

parallel resonances, assumed to occur at ~ = ~(n/N).

Evidently, qualitative agreement is good. The principal

discrepancy appears to be the simplistic assumption of the

cutoff frequency as given by (38). The data suggest that it

should be higher. Moreover, (38) is equivalent to the

assumption that -LO= polz(Nt\w), an estimate that is

high.
IV. COMPARISON OF DATA WITH THEORY The suppression of odd ordered H-mounting resonances

The test of (7) or (9) is whether or not the measured when the capacitor is in the V-mounting is qualitatively

resonant frequencies can be calculated by putting ~ = predicted by the uniform line model driven by a distrib-

(n/N)v, n=l,2,. -”, N, given appropriate values for q uted source. The analysis of the model leads to the conjec-

and ll. Although these parameter values could be calcu- ture born out in Fig. 5(c) that full suppression of the odd

lated by a numerical analysis of the field problem, the ordered resonances may fail if the V-mounting is off

validity of the results would be compromised by unknown center. The polar plot of the Sll of Fig. 5(c) (not included
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Fig. 9. Solid curve is plot of (,f/~CO) versus (~/T) calculated from (40).
Data points are observed parallel resonances.

here) shows two series resonances just above and below the

weak parallel resonance. These data are consistent with the

contention, based on the model, that two adjacent zeros

coalesce as the residue at the pole approaches zero.

The simple model of Fig. 8 fails to account for the

quasi-periodic characteristic of the dissipation loss at reso-

nance, as shown in Fig. 6, but it shows that oscillations of

the minima and maxima are a consequence of the folds in

the line and the fact that electrode thickness and skin

depth are of the same order of magnitude.

V. CONCLUDING REMARKS

The evidence that monolithic capacitors have the char-

acteristics of folded transmission lines can be summarized

as follows:

(i) Resonances occur in a sequence with diminishing

frequency differences that indicate the existence of

a cutoff frequency.

(ii) The dispersion equation of a simplified, periodi-

cally loaded line corresponds at least qualitatively

to the observed resonances.

The suppression or occurrences of resonances as they
depend on the capacitor orientation is qualitatively ex-
plained in terms of a uniform line with a distributed

source.

A simple model of a folded line shows that successive

maxima (and minima) of dissipation loss do not fall on

smooth envelope curves. This quasi-periodicity is affected

by skin depth relative to electrode thickness. Better corre-

spondence to observed dissipation loss might be improved

with a more sophisticated model.
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